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1. PROJECT ACCOMPLISHMENTS 

 

In the past year 2008-2009, we were able to complete the following tasks: 

 

 Completed the development of MASTER (Mining Autonomously Spatio-Temporal 

Environmental Rules), an algorithm to estimate missing sensor data and discover 

knowledge in centralized sensor networks, taking both the temporal and spatial 

dimensions of sensor data into consideration. 

 Implemented MASTER using C++ and conducted experiments comparing MASTER 

with four existing estimation algorithms for data streams, WARM, FARM, Spirit and 

TinyDB, using sensor data gathered from the NASA/JPL Sensor Web project. 

 Extended MASTER for multi-hop sensor networks.  

 Extended MASTER for cluster sensor networks. 

 Developed a data mining algorithm to discover closed frequent itemsets in data streams, 

SWM (Sliding Window based Mining). 

 Investigated additional sensor data applications and gathered additional sensor data 

including those from the NASA/JPL sensor applications for further testing. 

 Graduated two Master’s students and prepared two PhD students for their PhD qualifying 

exams. 

 Published two conference papers, submitted two conference papers, and prepared one 

journal paper for publication submission (twelve publications to date).  

 

 

In the following sections, we provide the details of the above tasks. 

 

1.1. Completed the development of a framework, called MASTER (Freshness Association 

Rule Mining), to discover knowledge and estimate missing sensor data in centralized sensor 

networks, taking both the temporal and spatial dimensions of sensor data into 

consideration. 

 

MASTER (Mining Autonomously Spatio-Temporal Environmental Rules) is a data mining 

framework tailored specifically for real-time sensor network applications. The framework allows 

the online analysis of sensor data streams to uncover the time-and-space dependent dynamic 

correlations between the data of multiple sensors. This analysis capability is exploited in two 

ways: 

 (1) Knowledge discovery 

 (2) Data estimation 

 

Knowledge Discovery 

It is often the case that the intrinsic physical laws governing the environmental variables being 

monitored by a particular sensor network are unknown and that no prior mathematical 

idealization for the physical variables exists. MASTER’s ability to mine sensor data streams in 

real-time provides the opportunity to analyze and uncover the secret realities of the environment 

under watch. The mining performed by MASTER is spatio-temporal; therefore it is capable of 

capturing the dynamic data changes both in terms of time and space. This capability allows the 
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discovery of the spatial sensor data dependencies as well as the evolution of such dependencies 

in terms of time. To discover such knowledge, the user (here researcher or scientist) may 

compose a mining query involving the sensor information sought. Information contained in a 

query may be either (1) explicitly stated or (2) generic to some level, in which case MASTER is 

expected to explore all of the implicit variability assumed in the user query. 

 

Data Estimation 

It is a known fact that sensor data are prone to loss, delay, and corruption due to the wireless 

sensor technology. To compensate for any potential data loss, data estimation is a valuable 

alternative. The MASTER framework can be sought to serve that purpose. By mining sensor data 

streams in real-time, spatio-temporal sensor correlations can be constructed dynamically. Hence, 

at any time if data are to go missing, correlations involving sensors of the missing data can be 

computed and then the reported data of the correlating sensors can be used to imply data 

estimates for the missing sensors based on such correlations.  

 

Mining Methodology 

The MASTER framework uses and extends the traditional concepts of association rules 

[Agrawal, 1993] to perform mining in the context of sensor data streams. Traditional association 

rules were originally developed for discrete data items, also known as basket data. MASTER 

extends the original association rule constructs to the paradigm of multivariate and continuous 

data. Succinctly, MASTER assimilates a sensor and a vector subspace into an item. Therefore, an 

association rule of items refers to set of sensors and their corresponding subspaces that are 

related. Further, an association rule is qualified as temporal if its data are considered during a 

well defined temporal period. Formally an association rule is an implication, i.e. a set of sensors 

and their subspaces implying a different set of sensors and their respective subspaces. An 

association rule is qualified in terms of two mining parameters: the support and the confidence. 

The support is the joint probability of the occurrence of all items in the rule. The confidence is 

the joint occurrence of the implied items of the rule (consequent items) conditioned on the 

antecedent items (those on the opposite side of the consequent items). Both mining parameters 

must surpass minimum user-defined thresholds. 

 

To accomplish knowledge discovery and/or data estimation, MASTER must compute (mine) all 

elements of an association rule, i.e. (1) the temporal period, (2) the sets of antecedent and 

consequent sensors, and (3) the corresponding sensor subspaces. 

 

Data Structure 

MASTER owes its mining ability to a data structure, called MASTER-Tree, which sets the stage 

for the mining algorithms. Although data streams admit an infinite data volume, the MASTER-

Tree is a compact structure whose space consumption does not grow in terms of the stream 

length. That said, the data stored in the tree are actually an abstraction of the raw stream data. 

The abstract summary is carefully defined to be compact enough without losing key data 

behaviors. Naturally, the data summary is incremental so as to be additively updated following 

the arrival of every new data round without increasing the space complexity. MASTER stores 

the first m sample moments of every stream during every fixed period. The MASTER-Tree 

stores all possible combinations of sensor elements and their corresponding vector subspaces. 

The complete vector space is assumed to be bounded and it is then discretized in order for the 
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tree to remain of finite order. Because the power set has an exponential complexity, so does the 

tree. To prune such complexity, we perform an offline spatial clustering on the complete set of 

network nodes. The MASTER-Tree is then built separately for each cluster of sensor nodes. The 

clustering is aware of the associated tree cost and therefore it is made adaptive to user-defined 

time and space cost bounds. Hence, an arbitrarily chosen compaction and time complexity are 

assured. On a related note, the estimation algorithm mentioned earlier is made iterative, i.e. the 

data estimate is fine-tuned progressively. This allows the estimation to be timed out at any time 

while converging to some estimate, hence also bounding the estimation time. Evidently the more 

estimation time is allocated, the more the estimate is refined. The iterative character of the 

estimation procedure is possible by virtue of having an association rule implying one missing 

node, and then augmenting the rule by adding more relevant nodes to the antecedent rule part. 

 

To handle correlations based on the time domain, we predefine a finite set of elemental cyclic 

periods. An arbitrary time period is any union composition of two or more elemental periods. A 

snapshot of the MASTER-Tree collection (one for each cluster) is stored for every period in the 

predefined period basis. Because data summary is incremental, the MASTER-Tree satisfies an 

additive property, meaning that if one desires to obtain data during a particular time, it is 

sufficient to combine (i.e. add together) the needed data from the snapshots that, when composed 

together, yield the chosen time. 

 

An Iterative Algorithm for Data Estimation 

The task of the estimation procedure is to autonomously and efficiently explore the rule space to 

(1) determine the relevant time period over which data shall be considered for rule evaluation, 

(2) determine the set of sensor nodes and their respective subspaces that constitute the rule 

(where the consequent node is the missing node), and (3) compute the estimate of the missing 

node as its expected value over its consequent subspace. The computed rule is evidently more 

interesting if its consequent missing node subspace has a “small span” as it would in turn 

suppress the variance of the estimate. On a related note, the notion of “small” consequent span is 

arguably a more intuitive way of visualizing the sensitivity of the estimate than the statistical 

notion of variance (i.e., the average of all squared distances to the mean).   

 

The search over the rule space needs to be properly orchestrated so as our estimation procedure 

is both effective and efficient. We developed an iterative estimation method in which the 

estimate is adjusted progressively. The fine-tuning of the estimate can be carried on until the 

error margin is met or until the estimation execution time is up. This way anytime the control 

process decides to time out the mining (when the user time bound is reached), we will always 

have some “ready-to-graduate” estimate. Since a data round may have several missing nodes 

each having several missing attributes, we shall run different estimation threads each estimating 

one particular missing attribute of one particular missing node. That way we guarantee that the 

estimation time is fairly allocated amongst all estimations while each estimation thread 

progressively fine-tunes its estimate.  

 

Now that we reduced the estimation method to estimating one particular missing attribute only, 

any estimation-sought rule is only required to imply a singleton consequent node whose 

subspace shall be viewed and constrained with the respect to the missing attribute in question.  

Figure 1 shows a flowchart of the estimation method.  
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Here we provide a summary of the algorithm description, the details of which are given in 

([Chok, 2009a], [Chok, 2009b], [Chok, 2009c]). The algorithm starts by identifying the most 

relevant temporal period for the current estimation problem. The algorithm then obtains the prior 

distribution of the missing attribute to be estimated from the MASTER-Tree. The algorithm then 

attempts to contain the stretch of such distribution over the user defined error margin while 

satisfying the support and confidence thresholds. This rule can be viewed as ø → M where M is 

the missing node (i.e., nothing implies M). If the last step fails to satisfactorily constrain the span 

of M, then relevant information from other streams needs to be acquired to refine the distribution 

of M. Meanwhile an estimate can be derived from the rule just obtained, and in that case, the 

consequent subspace of M has span higher than the allowed minimum span threshold (error 

bound). In reference to this parameter relaxation, such a rule will be referred to as a relaxed rule. 

The algorithm chooses one new antecedent node to imply the posterior distribution of M’s 

missing attribute.  An initial relevant subspace for the antecedent neighboring node is chosen 

based on its current reading. If enough support cannot be found, the relevant subspace is 

augmented iteratively until the support condition is met. Unless this antecedent node to be added 

has previously been missing, the subspace augmentation process is guaranteed successful 

termination. If, however, the relevant subspace for the new antecedent node was increased all the 

way to reach the limits of the complete subspace V without enough support being found, then the 

potential rule cannot possibly include the current antecedent node, and the algorithm skips it and 

proceeds to attempt a new antecedent node. After assuring enough rule support, the same 

principle of trying to constrain the posterior distribution of the missing attribute is applied. The 

new support and confidence can be efficiently and incrementally recomputed with every change 

of the relevant or consequent subspaces. 

 

The integration of a new antecedent neighbor is repeated until the estimation procedure reaches 

one of the three possible conditions: (1) a rule meeting the minimum support, confidence, and 

consequent subspace span is found, (2) the mining is timed-out and a relaxed rule is found, or (3) 

no more neighbors to add to the antecedent node set and a relaxed rule is obtained. The 

procedure then returns the estimate value as the final expected value computed over the 

consequent subspace of the final rule.  
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Figure 1. Data Estimation Algorithm 

 

 

1.2. Implemented MASTER using C++ and conducted experiments comparing MASTER 

with four existing estimation algorithms for data streams, WARM, FARM, Spirit and 

TinyDB, using sensor data gathered from the NASA/JPL Sensor Webs project. 

 

We ran simulation experiments to compare our method with the recent works on estimation of 

missing data streams, namely FARM [Gruenwald, 2007], WARM [Halachev, 2005], SPIRIT 

[Papadimitriou, 2005] and TinyDB [Madden, 2005]. It was reported in [Gruenwald, 2007] that 

these techniques perform better than the standard regressive statistical estimation approaches 

([Dempster, 1977], [Rubin, 1987], [Rubin, 1996]); hence we do not include those statistical 

methods in our comparison. To provide a common comparison ground, we let the compared 

methods view a multidimensional node as virtually separate nodes, each sampling data from one-

single attribute stream. To assess the contributions of our temporal mining, and multivariate node 
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rules, we also ran two additional reduced versions of MASTER where in one we turned off the 

temporal mining and in another, we only looked at single-dimensional data. 

 

We collected datasets from the real-life NASA deployed sensor network of 12 sensor nodes 

[NASA, 2009], which monitored the attributes of temperature, humidity, and flux in several 

locations within the Botanical gardens in San Marino, CA.  The streaming rate was once every 

time tick of 5 minutes.  This sensor network is part of NASA’s Sensor Webs project. The 

network’s spatial map is depicted in Figure 2.  In all experiments, we simulated missing data 

every 30 (plus a random noise) sensor reading rounds. Also a missing value may be missing for 

few consecutive rounds. All experiments were run on 2.49 GHz PC with 3.5 GB of RAM 

memory running a 2002 version of Windows XP Professional. 

 

 
 

Figure 2. NASA’s Sensor Network Spatial Map [NASA/JPL] 

To test the significance and consistency of our results, we collected four datasets, DS1-DS4, 

during 4 different time periods of variable lengths: DS1 contains samples from a 3-day period,  

DS2 includes samples from a 1-week period, DS3 a 4-week period, and DS4 a 1-year period. 

The NASA network sampled data every 5-minutes. We compared all methods on 2 performance 

metrics: estimation accuracy and average execution time per round. We measured the accuracy 
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with respect to the Mean Absolute Error (MAE). In addition to the comparative performance 

experiments, we ran sensitivity and network-size scalability experiments as well as an accuracy 

time overhead tradeoff experiment.  

 

Table 1 (a). Default Comparative Performances (MASTER Methods Timed Out) 
Method\Dataset DS1 DS2 DS3 DS4 

 MAE VAR TIME 

(ms) 

MAE VAR TIME 

(ms) 

MAE VAR TIME 

(ms) 

MAE VAR TIME 

(ms) 
MASTER 0.61 0.22 0.13 0.92 0.51 0.13 1.22 1.33 0.13 2.07 1.68 0.13 

MASTER (NT) 1.08 0.91 0.13 1.91 0.88 0.13 2.26 1.81 0.13 4.12 3.12 0.13 

MASTER (SD) 0.70 0.45 0.13 1.12 0.54 0.13 1.31 1.35 0.13 2.23 1.72 0.13 
FARM 5.48 22.12 12.34 6.06 28.12 13.24 6.44 73.22 11.28 6.89 31.23 18.22 

WARM 3.12 1.32 2.65 3.92 1.45 2.97 4.38 2.79 2.66 7.81 3.59 3.51 

SPIRIT 9.51 21.06 0.19 10.40 25.66 0.15 12.63 69.53 0.13 18.84 454.69 0.13 

TinyDB 81.42 5524.63 0.13 83.86 6038.60 0.13 66.97 4960.49 0.13 58.95 4914.79 0.13 

 

Table 1 (b). Default MASTER Performances (Complete Runtimes) 
Method\Dataset DS1 DS2 DS3 DS4 

 MAE VAR TIME 
(ms) 

MAE VAR TIME 
(ms) 

MAE VAR TIME 
(ms) 

MAE VAR TIME 
(ms) 

MASTER 0.24 0.06 0.56 0.38 0.26 0.68 0.66 1.22 0.72 0.92 1.30 1.29 

MASTER (NT) 0.55 0.80 0.57 0.69 0.48 0.64 1.07 1.61 0.82 1.45 3.08 1.19 
MASTER (SD) 0.45 0.32 0.56 0.54 0.34 0.62 0.62 0.55 0.69 0.89 1.09 1.03 

 

Table 2. MASTER’s Performance Sensitivities on DS4 (Complete Runtimes) 
Cluster Size MAE TIME (ms) Discretization Granularity MAE TIME (ms) Temporal Granularity MAE TIME (ms) 

1 2.06 0.16 Very Coarse 1.6 1.89 Coarse 1.13 1.26 
2 1.15 0.23 Coarse 1.15 1.57 Fine 0.92 1.29 

3 0.98 0.48 Fine 0.92 1.29 Very Fine 0.69 1.31 

4 0.92 1.29 Very Fine 0.95 1.21    

 

 

Comparative Accuracy Performance 

Here we show only the accuracy in estimating the temperature values. Analogous results were 

observed for other missing attributes. Table 1 (a) shows the MAE of each method over each of 

the four datasets considered. MASTER’s defaults were set to realistic averages (i.e., 

minSup=1%, minConf=90%, and 4 nodes per cluster). The defaults of the candidates were 

chosen either from recommendations in the literature or by extensive experimentation to pick the 

best parameters.  MASTER had consistently the lowest and thus the best MAE. By observing the 

MAE records in the 4
th 

and 5
th

 rows of Table 1 (i.e., MASTER with non-temporal mining (NT) 

and MASTER with single dimensional data (SD)), it is evident that the temporal mining 

contributes more to the accuracy of estimation than does information across attributes. 

MASTER’s default temporal periods consisted of all data snapshots over each 2-hour period 

(beginning from 12am) of every weather season, hence 12x4 (i.e. 48) snapshots. WARM’s and 

FARM’s accuracies trail MASTER’s and that of its two derivatives. In all cases their accuracies 

are orders of magnitudes higher than MASTER’s. SPIRIT and TinyDB have much worse errors.  

The increase in MASTER’s error in terms of the data set is due to the increasing number of 

records from the 1
st
 to the 4

th
 dataset. However, note that we can, for instance, lower the error 

over the 4
th

 dataset to about the same error as the 3
rd

 dataset by considering additional temporal 

snapshots over each month of the year (see Table 2). By this same principle, the error can be 

lowered as desired by considering more snapshots as appropriate. Generally snapshots definition 

should be chosen according to the desired query power. Table 1 also shows the variance of the 

temperature estimate for each method (the VAR columns). The MASTER methods have the 
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lowest variances. MASTER’s variances grow in terms of the dataset size due to the increasing 

amount of records which causes the posterior data distributions to be more scattered.  

 

Comparative Time Performance 

In addition to accuracy, Table 1 (a) shows the average execution time per round. MASTER’s 

runtime was timed out to match that of the fastest method (TinyDB). Again this is possible by 

virtue of the iterative property. Hence this experiment shows that while our method can be made 

to run the fastest, it simultaneously achieves the best accuracy which is many orders of 

magnitude higher than all methods.  

 

Accuracy vs. Time Tradeoff 

Table 1 (b) shows the estimation runs of the MASTER methods without timing out i.e., the 

mining is allowed to complete. Evidently, the error is reduced as more time is allocated. 

MASTER’s MAE is less than one degree Celsius on all datasets while its runtime per data round 

is in the order of one millisecond, which remains negligible compared to the sampling rate of 5 

minutes. It is MASTER’s overhead flexibility and superior performance in both the overhead and 

accuracy that allows it to ensure QoS for sensor network applications.  

 

Performance Sensitivity 

Table 2 shows MASTER’s sensitivity experiments on the dataset DS4 in terms of the cluster 

size, discretization granularity, and temporal granularity. The accuracy improves with the cluster 

size; this is easily explained by the fact larger cluster sizes imply more elaborate rules which also 

require larger running times. Finer discretization granularity improves both the estimation 

accuracy and the runtime. This is because higher cell resolution makes posterior distributions 

less scattered and thus less computational work is needed to refine them. Higher temporal 

granularities also enhance the estimate while requiring marginally higher time overhead. Coarse 

granularity considered snapshots over every 2-hour period, the fine granularity (default) over 

every 2-hour period of every weather season, and the very fine granularity over every 2-hour 

period of every month. 

 

Time Scalability 

Figure 3 shows the scalability of the time performances with the respect to the network size. 

Holding constant the mining parameters, we ran synthesized versions of the dataset DS4 to have 

varying number of nodes, i.e. from 12 to 108 in increments of 12. The nearly horizontal derives 

curves suggest that MASTER, SPIRIT, and TinyDB grow linearly in terms of the problem size 

with SPIRIT growing at a little higher rate. Our scalability experimentation on WARM and 

FARM (not depicted due to the major scale difference) confirms the claims in ([Gruenwald, 

2007] and [Halachev, 2005]) that they scale quadratically. 
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Figure 3. Time Scalability in Terms of Network Size 

 

 

 

1.3. Extended MASTER for multi-hop sensor networks 

 

In a multi-hop sensor network, a sensor sends its data to the base station through intermediate 

sensors. Typically sensors are placed far away from the base station in a multi-hop sensor 

network. The distant sensors use other sensors to route the data to the base station.  

 

Issues Related to MASTER 

In multi-hop sensor networks, many more missing values are generated due to multiple hops in 

the routing path when compared to single-hop routing, e.g. link failure accumulation, signal 

interferences, etc. What’s more, critical routing node failures may cause all messages routed by 

these nodes to miss simultaneously. Due to the complexity of such networks, we cannot predict 

how and when and how many sensors will be missing, and all are dynamic as routing table/paths 

might change on the fly. These issues drive us to research and develop a new approach for a 

multi-hop sensor networks environment. 

 

a) Naive Spatial Relation 

In single hop centralized sensor networks, spatial relation usually holds due to the homogeneous 

networks property. Those kinds of networks are typically used to monitor small-scale, stable 

phenomena.  However, multi-hop sensor networks are heterogeneous networks and typically 

used to monitor complex, large-scale, and changeful phenomena. Figure 4 shows a typical 

example of heat transferring where a multi-hop sensor network is deployed to monitor some kind 

of heat transferring process. At a time point, according to the physical phenomenon there are two 

isotherms that divide the area into three regions.  Inside each region, sensors’ readings display a 

similar pattern, i.e. close temperature. However, across regions, sensors’ readings vary, what’s 

more, the changing trend of their readings also vary, making it very difficult to uncover the 

relationships among the sensors from different regions.  Apparently if we follow a fixed cluster 

structure as the one we have done in our MASTER framework for single-hop centralized sensor 

networks, we risk missing valid association rules among sensors in this example.  
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Figure 4. A typical heat transferring process phenomenon 

 

b) Simultaneously Missing 

Spatially close sensors are vulnerable to simultaneous failures due to multi-hop routing. The 

reason is that in a regular multi-hop networks, neighborhood nodes tend to route their messages 

through a “router” node /gateway /etc., which is often located between its neighborhood and base 

station. These “router” nodes typically consume more energy due to re-lay messages for other 

nodes and are more vulnerable to energy exhaustion, message corruptions, etc. What’s more, 

failures of router nodes can cause the loss of whole child nodes’ readings/messages, i.e. if we 

still fix the cluster structure according to spatial positions, then in a cluster all sensors might be 

missing. 

 

c) Dynamic Routing 

In a multi-hop sensor network, routing paths might evolve and networks condition might change 

on the fly, meaning a fixed cluster structure cannot work well in this situation. 

 

Our Approach 

To resolve the issues discussed above, we proposed modifications to the MASTER framework 

developed for centralized sensor networks that we presented in Section 1.1. Here we summarize 

the modified framework, called MASTER-M (MASTER for Multi-hop sensor networks), 

through the following three key modifications: 

– Dynamic clustering is necessary for running MASTER on multi-hop sensor networks; 

– Initial cluster setting should not use spatial positions as the only criterion; and 

– Sensors which tend to be missing simultaneously should be assigned to different clusters.  

a) Dynamic Clustering 

We first use the training dataset to initialize the cluster structure, and then dynamically adjust the 

cluster structure on the fly as shown in Figure 5. 
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– Establish the initial cluster structure through analyzing the training data 

– Dynamically adjust the cluster structure on the fly 

o If in a cluster all sensors are missing, adjust the cluster immediately 

o Evaluate sensor relationships in a cluster, if they do not hold any more, adjust the 

cluster 

 

Figure 5. Dynamic Clustering for multi-hop sensor networks 

 

The Initial Cluster Construction Algorithm 

Figure 6 shows the algorithm to construct the initial cluster.  At the beginning, arrange all 

sensors with the most missing first and the least missing last. Here we define: missing rate = # of 

missing rounds / # of total rounds. Sort the sensors according to the descending order of their 

missing rate. The sensors with the highest missing probability will be the “seeds” of the clusters. 

The significance of seeds is threefold: for a clustering technique, choosing the center (seed) of 

each cluster is typically difficult and important; for data estimation, seed is meaningful for the 

task, i.e., seeds are the most demanding nodes; and for network routing, seed usually is the 

sensor node which is far away from the base station.  

 

Next, for each pair of nodes, we compute a distance between the two nodes.  There are two types 

of distances between two sensors: Standard Deviation of Difference of readings (SDOD) and 

Simultaneously Missing Rate (SMR). SDOD and SMR both are very important for deriving 

association rules and further estimating missing values.  SDOD shows the degree that two 

sensors are related to each other:  the less SDOD is, the stronger the relationship between the two 

sensors is.  SMR shows whether two sensors tend to miss simultaneously: the less SMR, the less 

chance that two sensors will be missing together. 

 

We normalize SDOD and SMR to a value between 0 and 1, and use the Euclidean distance 

formula to obtain the distance of SDOD and SMR between two nodes. In this way, we get a 

digitized measurement of the priority/benefit of putting two nodes into the same cluster. Then we 

can establish a half matrix of all node pairs to store the distance information.  Note that the 

elements {Si, Sj} and {Sj, Si} are the same due to the symmetry of the distance function; thus we 

do not need a full matrix. 

 

{S1,S2} {S1,S3} . .. … {S1,Sn} 

 

{S2,S3} 

 

{S2,S4} 

 

 {S2,Sn} 

 

 

… 

 

    

{Sn-1,Sn} 
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– For S1,(Remember, S1 has the highest missing rate), among S2,…,Sn, pick up the sensor with 

the smallest distance, name it as Si 

– Then for S2, (if it is already in the cluster of S1, pick up next node), pick up the sensor 

with the smallest distance among S3,…,Sn, name it as Sj  

• If Sj=Si, then let Si decide which distance among S1Si and S2Si is smaller, use 

that distance and that pair 

• Then for S1 (or S2), choose the second smallest distance 

– Use the above routine, establish 2-node clusters 

– Assume the resource-bounded cluster size is c,  

• For S1, it has formed a cluster of {S1, Si,…}, if the size of it is less than c 

– For all other nodes, pick up the node with the smallest distance to S1, 

for example, Sj  

– Merge {S1, Si,…} into the cluster containing Sj if the resulting cluster 

size is not greater than c 

• Do the same thing for S2,…,Sn  

• Repeat the above routine until no new cluster is formed, then the initial cluster 

structure is done. 

 

Figure 6.  The Initial Clustering Construction Algorithm 

 

After the initial structure is initialized, when an essential change occurs, the initial structure is 

adjusted online as shown in Figure 7. 

 

– Continue to evaluate the relationship between sensors after the cluster structure is initialized 

– Use a FIFO buffer with the size of the training dataset 

– When an essential change occurs, adjust the cluster structure 

– Compute the distances on the fly, re-cluster if needed, i.e., if  a distance in a cluster is 

greater than a threshold 

– When all sensors are missing in a cluster, adjust the cluster using the re-clustering procedure, 

which is similar to the initial clustering process. 

 

Figure 7.  The Online Cluster Adjustment Algorithm 

 

Empirical Evaluation 

For the experimental evaluation of MASTER-M, we employed the real-world dataset - the Intel 

Lab data [Madden, 2009] - to verify our claim that our approach is better than any known data 

estimation approach to date. This real life dataset has been collected over a period of 

approximately one month using an ad-hoc, multi hop routing protocol from a set of 54 sensors 

(Mica2Dot) placed randomly across a 41 by 31 meter indoor floor space. The hop count as well 

as the network topology for the associated dataset are variable and based on TinyDB [Madden, 

2005] in-network query processing system running on TinyOS operating system. The total 

number of sensor reading rounds collected for all the sensors is approximately 65,000. However 

for our experimental evaluation we have used only sensors 41 to 49.  This is because these nine 

sensors have produced the most number of rounds, which is 6,400 rounds in this dataset, which 

have no missing data. However, we ended up using only the first 3000 rounds (Figure 8) of these 
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6.400 rounds because as shown in Figure 9, the sensor readings after around round 3000 seem to 

be unrealistic.  We then generated missing data for these rounds, ran MASTER,  MASTER-M, 

TinyDB and Spirit on them, and compared the estimated results with the real data to compute the 

accuracy of the four methods.  Due to un-predictable nature of the underlying routing path that a 

particular sensor may use to transmit its data, we constructed two arbitrary network graphs, N1 

and N2, as shown in Figures 10 and 12, based on a random path and generate missing data from 

them accordingly.  In these figures, each circle represents a sensor node, and B.S. represents the 

fixed base station where the data estimation algorithms are executed. 

 

Figures 9 and 13 show the performance of the four methods, MASTER, MASTER-M, TinyDB 

and Spirit, in terms of the error rate in data estimation, corresponding to the two networks N1 

and N2.  The preliminary results show that overall MASTER and MASTER-M are compatible 

and perform better than TinyDB and Spirit.  One of the reasons that MASTER-M does not show 

major improvements over MASTER because in this dataset, the expected change in phenomena 

that is the key motivation for the design of MASTER-M does not exist.  Our future plan is 

therefore seeking datasets that exhibit this characteristic and performing extensive experiments 

to study its impacts on the behavior of MASTER-M compared with other algorithms. 

 

 

      
       

Figure 8.  3000 rounds    Figure 9.  6400 rounds 
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Figure 10. Arbitrary Network N1 and Its Routing Graph 

 

 

 

 
 

Figure 11. Estimation Error Rates of Data Estimation Techniques in Network N1 
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Figure 12. Arbitrary Network N2 and Its Routing Graph 

 

 

 
 

Figure 13. Estimation Error Rates of Data Estimation Techniques using Network N2 
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1.3. Extended MASTER for Cluster Sensor Networks 

 

Clustered Sensor Network (CSN) is the one where some sensor nodes are clustered into a group 

to ease data transmission and reduce power usage [Younis, 2004].  Each group has a sensor node 

designated as a cluster head.  In a heterogeneous Clustered Sensor Network the cluster head 

comes with more resources than the other sensor nodes [Mhatre, 2004] and all the sensor nodes 

transfer the data through the cluster heads. In some Clustered Sensor Networks cluster heads also 

work as data aggregation points. A cluster head is the one where data from all the sensors in the 

group are available; so, we find it justifiable to run the data estimation algorithm at the cluster 

heads. The major problem with the clustered sensor network is that clusters get changed over 

time [Mhatre, 2004] because of power failure or equal task distribution or some other reasons. In 

this section we discuss the weak points of our current data estimation algorithm, MASTER, in 

Clustered Sensor Network and propose a preliminary solution for it.  

 

Issues Related to MASTER 

 

a) Change of Cluster Head 

In a clustered network, a node is chosen to be the cluster head that performs as a data fusion 

point for the cluster [Younis, 2004], [Mhatre, 2004]. No matter homogeneous or heterogeneous 

clustered networks, cluster heads change over time [Mhatre, 2004]. A clustered head is a 

lucrative choice to run data mining techniques. This is because all data from other sensors of a 

cluster is available at this point. Most of the data mining techniques construct a model based on 

history data and others assume some kind of mathematical model for data distribution. In the 

former case, if the cluster head changes over time for a sensor, the model needs to transfer to the 

new cluster head, which requires a transfer protocol. Again if the cluster head fails for some 

reasons, the model may be destroyed before being transferred to the other node.  It is not feasible 

to replicate a complicated model of online data mining technique in many cluster heads due to 

the overheads associated with their maintenance. 

 

b) Change of Cluster 

Association rule data mining establishes rules among the sensors. If the cluster changes over 

time [Younis, 2004], two associated sensors in the previous cluster may not be in the same 

cluster for the newly formed cluster structure. The data mining model must have the capability to 

partition sensors into small sub-models and later re-combine them again to form a new model. In 

this case, changing the cluster requires significant work for the cluster heads.  

 

c) Sensor Unavailability 

Two correlated sensors may belong to different clusters. They are correlated because they might 

be close to each other; however, they may belong to different clusters because the corresponding 

cluster heads are the nearest cluster head from the respective sensors. In such situation, they will 

go into different clusters even though they are correlated. So if the data mining algorithm runs on 

a cluster head, then the algorithm will not capture such relationships even though this kind of 

relationships may be important for data estimation.  
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Our approach 

From the above discussion it is justifiable that incorporating a good re-clustering algorithm into 

MASTER could be a very good stepping stone toward Clustered Sensor Network. MASTER 

uses association rule mining with help of a very rigid tree called MASTER tree as described in 

Section 1.1. MASTER tree is computed at the very beginning of the lifecycle of a sensor 

network. The tree is very rigid with respect to change. It is very difficult to add a new node or 

remove a node from the middle of a MASTER tree. In this section, we propose a solution for this 

problem with necessary modifications to the MASTER tree. Here we assume MASTER runs on 

the cluster heads and uses the physical clusters as the logical clusters to build the MASTER tree. 

Our solution algorithm is the solution for building a new MASTER tree from the old available  

MASTER trees where the new MASTER tree has some sensors from the previous trees. Our 

intuitive solution tries to exploit the similarities between the sensors with respect to change of 

data. We call our solution re-clustering because the need of merging the old MASTER trees to 

form a new one due to physical re-clustering, which essentially leads to logical re-clustering in 

MASTER.  

 

In our re-clustering approach we assume that each data item has a timestamp attached with it and 

timestamp is a sequential natural number. We found it justifiable because sensor data are time 

varying data and they have time attached with them. Another assumption is that the sensor clocks 

are synchronized with each other. The information available in each node in the current 

MASTER tree is not enough to establish a new MASTER tree from it because of its lossy nature. 

However an infinite memory is not acceptable for any lossless data structure designed for data 

streams; so we add some additional information in each node that will ease the re-clustering 

process. We add the time interval information within each cell so that we can find the percentage 

of data items belonging to a particular cell within the attached time interval; later we use that 

information to reach an intermediate data structure which leads toward re-clustering. Our 

approach consists of three basis steps: 

– Add additional information in each tree node; 

– Construct an intermediate data structure to ease the re-clustering process; and 

– Develop an algorithm to construct the new MASTER tree. 

a) Adding additional information in each tree node 

In our modified MASTER approach, called MASTER-C (MASTER for Cluster sensor 

networks), the MASTER tree has grid-cells in each node and each cell has a range attached with 

it. Each grid-cell stores the four moments of the data that go to the attached range. We implant 

two new items in a grid-cell. One is the starting timestamp which stores the timestamp for the 

first data item that went to that cell, and another one is the ending timestamp which stores the 

timestamp of the last data item that went to that cell.  

b) Constructing a new data structure 

We create a novel data structure to carry out our task. Our new data structure is also a tree, which 

we call a time interval tree.   A MASTER tree is a descendant of a pattern tree. A MASTER tree 

uses more than one pattern trees and merges them into one.  In that tree a sensor node appears in 

a couple of places, and the MASTER approach implants a grid-structure on it. We build a time 

interval tree for each of the appearances of a sensor node. Each of the individual cells in an 

appearance originates a node in the time interval tree. From now on we will use the term node to 
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represent a tree node of the time interval tree. Each node has four items in it: the starting 

timestamp, the ending timestamp, the sum of the number of data items the cell has in it, and the 

children nodes’ data items count and a pointer to the originating cell. By using the starting 

timestamp and ending timestamp we can easily compute how many data items were there within 

this interval. The amount of data within the interval is actually the number of items an interval 

node can accommodate. 

 

Definition 1: A node is defined as  where s is the starting timestamp, t is the ending 

timestamp, and c is the items count. The total number of items this node can accommodate is 

. A node is called dense node if it has as many data items as it can accommodate and a 

node is called sparse node if it has fewer data items than it can accommodate. 

 

Definition 2: An interval is a collection of nodes defined by  where s is the earliest starting 

timestamp of the nodes, t is the latest ending timestamp of the nodes, and c is the sum of the 

items count or the number of data items it has. The total number of items an interval can 

accommodate is . An interval is called dense interval if it has as many data items as it 

can accommodate and it is called sparse interval if it has few than it can hold. Two or more 

sparse nodes can form a dense interval. 

 

Definition 3: A node  is called a superset node of  if  and .  In that case 

the latter is the subset node of the former. The same relations held by the superset interval and 

sunset interval. 

 

Along with the data structures, we want to reveal some of the properties of the nodes and 

intervals. These properties are used in the algorithm very often. Some of them are too trivial that 

we have omitted the mathematical construction from this report. 

 

Lemma 1: A dense interval cannot overlap with any other interval. 

 

Lemma 2: A dense interval cannot be in the middle of two overlapping sparse intervals. 

 

Proof: Let  is a dense interval and  and  are two overlapping sparse 

intervals. If  starts before  and  is in the middle of them then  

and . According to Lemma 1,  cannot overlap with any other intervals; 

therefore,  and . Hence,  or . If  and 

 are two overlapping intervals then  must be true. But both of the previous 

arguments cannot be true simultaneously; hence the dense interval cannot be in the middle. 

 

Lemma 3: The dense interval forming sparse intervals must be consecutive. 

 

Proof: This is the more generic case of Lemma 2. We have omitted the proof from this report 

because of its triviality. 

 

Figure 14 shows the time interval tree construction algorithm.  The construction phase of time 

interval tree starts with creating the root node. The root node has the earliest timestamp from the 
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MASTER tree as the starting timestamp and the latest timestamp as the ending timestamp. As 

this node does not represent any cell in the MASTER tree, its data item count is the total number 

of data items and it does not point to any real cell. At each step the algorithm find the cell with 

the earliest timestamp from the MASTER tree. Here by using the term MASTER tree we mean 

the collection of the grids for a sensor’s appearance for which the time interval tree is 

constructed. Then the algorithm creates a new node pointing to that cell. The starting interval, 

ending interval and data items count of the node come from the cell directly. In the next step, our 

algorithm finds an appropriate parent for the newly created child node. The parent node is the 

furthest node from the root node, which is a superset node of the given node. By definition, the 

root node is the superset node of all nodes. The child nodes under a parent node are sorted 

according to their starting timestamps. If two or more child nodes form a dense interval, the 

algorithm will add a new node with the items count as the sum of the items counts of all child 

nodes and the NULL cell pointers. The starting timestamp (ending timestamp) of the new node 

will be earliest (latest) among the dense intervals forming the sparse nodes. Those sparse nodes 

will be the child nodes of the newly formed dense node, and the parent of the newly formed 

dense node will be the parent of those sparse nodes. Such tree will be built for each of the 

appearances of the sensors in the MASTER tree.  
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procedure constructTimeTree()  

root ← createRootNode() 

repeat until all cells are taken care off 

   cell ← findNextCellwithEarliestStartingTimeStamp() 

   node ← createNewNode(cell) 

   parent ← findParent(root, node) 

   makeChild(parent, node) 

end loop 

end procedure 

 

procedure createNewNode(cell) returns node 

node ← new node 

node.startingTimeStamp ← cell.startingTimeStamp 

node.endingTimeStamp ← cell.endingTimeStamp 

node.itemCount ← cell.itemCount 

node.cell ← c 

mark node if densed 

end procedure 

 

procedure findParent(root, node) 

currentNode ← root 

if(currentNode.startTime < node.startTime and 

currentNode.endTime  > node.endTime) 

   foreach childNode in currentNode.children 

      if(findParent(childNode, node)!=NULL) 

         return childNode 

   end loop 

else return NULL 

end if 

end procedure 

 

procedure addChild(parent, node) 

parent.children.add(node) 

mark node if densed 

mergeDensedChildren(parent) 

end procedure 

procedure mergeDenseChildren(parent) 

interval ← empty 

nodes ← empty 

foreach child in parent.children 

   if(! isDense(child)) 

      if(!interval.disjoint(child)) 

         interval.join(child) 

      else // next nodes are not overlapping with running 

interval 

         interval ← empty 

         nodes ← empty 

      end if 

      if(isDense(nodes)) 

         nd ← new node 

         foreach node in nodes 

            nd.children.add(node) 

         end loop 

         nd.itemCount = sum of all children item count 

         nd.startTime= interval.startTime 

         nd.endTime = interval.endTime 

         nd.cell = NULL 

         mark nd if densed 

         interval ← empty 

         nodes ← empty 

      end if 

   else 

      interval ← empty 

      nodes ← empty 

   end if 

end loop 

end procedure 

 

 

Figure 14. The Time Interval Tree Construction Algorithm 

 

 

c) Developing an algorithm to construct a new Master-tree 

Figure 15 shows our algorithm to construct a new Master tree.  The construction process starts 

with the finding of a minimal size dense node from the trees constructed for the prior sensor 

node. Once it finds the minimal size dense node, it tries to find a matching dense node for the 

posterior sensor node. If the algorithm finds an exact match, it builds the MASTER tree for that 

specific prior and posterior intervals; if it cannot find one, it looks for the smallest superset dense 

node. The algorithm gets the new node as the smallest node and look for the same size dense 

node in the prior trees. The algorithm continues until it finds a match. Once it finds a match it 

collects all the cells, then it removes the cells which are already taken care off. The posterior 

distribution is computed for individual cells using the Pearson system and those branches are 

added to the MASTER tree. This algorithm guarantees at least one node because the root node 
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includes the whole time period and it is the same for all trees; therefore, at least two root nodes 

will match with each other. Hence, this guarantees the termination of the algorithm.  

 
procedure joinMASTER(priorTrees, posteriorTrees) 

priorInterval ← empty 

posteriorInterval ← empty 

intervalUsed ← empty 

until all dense intervals are in intervalUsed 

   foreach tree in priorTrees 

      interval ← findNextSmallestInterval(tree) 

      if(interval < priorInterval) 

         priorInterval ← interval 

      end if 

   end loop 

   posteriorInterval ← findInterval(posteriorTrees) 

   until posterirInterval ≠ priorInterval 

      if(posterirInterval > priorInterval) 

         priorInterval ← findInterval(priorTrees) 

      else 

         posterirInterval ← findInterval(posteriorTrees) 

      end if 

   end loop 

   priorCells ← findTheCells(priorInterval) – 

findTheCells(intervalUsed) 

   if(priorCells is a unit cell) 

      create posterior grid by finding the cells 

   else 

      estimate posterior grid 

   end if 

add the newly created grid with existing grids. 

end loop 

end procedure 

 

procedure findInterval(trees, interval) 

retInterval ← empty 

foreach tree in trees 

   nodes ← findClosestNodes(tree.root, interval) 

   if(nodes – interval < retInterval - interval) 

      retInterval ← interval(nodes) 

  end if 

end loop 

return retInterval 

end procedure 

procedure findClosestNodes(node, interval) 

nodes ← NULL 

if(interval subset of node) 

   tracking ← nil 

   foreach child in node.children 

      if(isDense(child)) 

         if(interval sunset of child) 

            nodes ← findClosestNodes(child, node) 

            returns nodes 

         end if 

         if(! Interval.disjoint(child)) 

            tracking.add(child) 

         end if 

      else 

         if(! Interval.disjoint(child)) 

            nodes ← allNodes(node) 

            returns nodes 

         end if 

      end if 

   end loop 

   if(isDense(tracking)) 

      if(interval subset of interval(tracking)) 

         nodes ← allNodes(tracking) 

      end if 

   end if 

   if(nodes=NULL) 

      nodes ← allNodes(node) 

   end if 

end if 

returns nodes 

end procedure 

 

 

Figure 15.  The MASTER Tree Construction Algorithm 

 

 

 

 

 

 



 

Grant No: NNG05GA30G; PI: Le Gruenwald 
Page 24 of 32 

 

1.5. Developed a sliding-window based algorithm to mine closed frequent itemsets in data 

streams. 

 

The underlying data mining approach in our MASTER algorithms is based on the discovery of 

frequent itemsets in data streams in order to establish association rules among sensors. In this 

work, we developed an algorithm to discover closed frequent itemsets instead of frequent 

itemsets.  Closure-based mining not only shares attractive features of frequency-based 

summarization of subsets, but also has outstanding advantages in greatly reducing the number of 

frequent sets, maintaining complete information and being able to generate non-redundant 

association rules. Though some approaches directing at the subject have been presented, they 

basically check all the subsets relevant to the transaction entering or leaving the sliding window 

and/or the whole complex information mined from the sliding window. This is unnecessary and 

impractical when transaction size (potential mining space) is large. Moreover, the mutual 

relationship between additions and deletions of closed itemsets, caused by the continuously 

entering and leaving transactions, respectively, is ignored in previous works.  

 

Our approach 

We developed a novel and succinct strategy for mining closed frequent itemsets over data 

streams that greatly prunes the checking space to exclude unnecessary candidates. The algorithm 

is called SWM - Sliding Window based Mining of frequent closed itemsets in data streams.   In 

summary, SWM works as follows.  When the window slides, it is accompanied by two 

transactions: one entering and the other leaving. For either of them, the algorithm first takes it to 

scan the current window on the fly, intersecting it with all transactions in the sliding window to 

produce the useful “closed itemsets” in order. Then it checks the closed subsets in the data 

structure (called Closed Trie, CT) to identify these subsets whether they are existing or new 

closed itemsets. The closed frequent itemsets can be output at any time by traversing CT.  The 

closed itemsets are maintained in a lexicographically ordered trie, where each node is a closed 

itemset represented by a path from the root to itself. Each node stores two types of information: 

support and closed support.  The algorithm includes the sub-algorithms to add and delete a node 

from the CT. 

 

Figure 16 shows an example of a sliding window and a current CT.  The sliding window has the 

size W1 and contains four transactions t1 (having data items A, B), t2 (data items C, D), t3 (data 

items A, B, C) and t4 (data items A, B, C).  The new transaction t5 (data items A, C, D) is 

entering into the sliding window.  The pair of two values enclosed in parentheses (x, y) next to a 

node (e.g. (3, 2) next to node C)) represents the support x and closed support y for that node. 
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Figure 16. Closed Trie for Current Sliding Window 

 

 

 

Performance Evaluation 

To validate our algorithm SWM, we first analyzed the existing related algorithms and presented 

their corresponding computation complexities. Through this analysis and comparison, we 

demonstrated how SWM improves the efficiency of mining the sliding window-based data 

streams. Then, we tested our algorithm on both synthetic and real data. The performance of 

SWM was compared with those of CFI-Stream [Jiang, 2006] and Moment [Chi, 2004], the state 

of art algorithms for mining frequent closed itemsets in data streams.  

 

a) Computation Complexity Analysis 

Moment [Chi, 2004], CFI-Stream [Jiang, 2006] and GC-Tree [Chen, 2008] are online algorithms 

which perform (frequent) closure checking over data stream sliding windows. To better 

demonstrate the characters for each of these algorithms, we list the main factors of each 

algorithm as well as its complexity in Table 4.  

 

In this analysis, it is notable that the time complexity of SWM is much smaller than that of all the 

previous methods while keeping efficiency in space. The main reason is that it is based on the 

sliding window size rather than the number of the entire closed itemsets, which is much greater 

than the former, usually by a magnitude of 10~100 or even bigger. 
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Table 4. Complexity Analysis 

 

 

Main 
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complexity 

Complexity 
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SWM 
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transaction 

size, # of new 

added nodes 

per 

transaction 

2

0nst

))(( skk  
n 

st-support threshold 

s-sliding window size; 

t-average transaction size; 

n-# of all nodes maintained in the algorithm; 

n0-average # of new added nodes; 

m-# of the items; 

nc-# of changes per transaction in Moment 

l-average of each item’s frequency in the sliding window; 

k(x)- k(x) depends on x and ],0[)( xxk , where x is a 

parameter related to the dataset. Usually xxk )( . 

 

 

b) Experimental Results  

We used six synthetic datasets: T10I4D100K, T15I10D100K, T20I6D100K, T25I8D100K, 

T30I8D50K and T40I10D10K, denoted by D1~D6, respectively. Each dataset is generated by 

the same method in [Agrawal, 1994], where the three numbers of each dataset denote the average 

transaction size (T), the average maximal potential frequent itemset size (I) and the total number 

of transactions (D), respectively. The performance metrics include the number of checked 

nodes/itemsets per updating transaction, running time and memory usage. For each dataset, the 

support threshold for Moment uses the same four values: 0.02%, 0.2%, 0.5% and 1.0% that the 

authors of Moment used in [Chi, 2004]. For all the experiments we report the average 

performance over 100 consecutive sliding windows (each with size D). 

 



 

Grant No: NNG05GA30G; PI: Le Gruenwald 
Page 27 of 32 

 

Sensitivity of Dataset Size Tested with all six datasets D1~D6, the experiment results show that 

SWM performs the best in terms of the number of checked nodes/itemsets. We only present the 

results on D4 in Figure 17, but for other datasets, the results are also similar. 

 

 
 

Figure 17.  Number of checked nodes per transaction for D4 

 

Performance of Running Time and Space The running time and space on D1~D6 with four 

different support threshold values are shown in Figure 18 and Figure 19, respectively. 

 

 
 

Figure 18.  Running Time  
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Figure 19.  Memory Usage  

 

 

Both the complexity analysis and experimental results show that our approach is time and space 

efficient, and has good scalability as the size and number of transactions increase.  
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2. CHALLENGES 

 

The major challenge that we faced was how to obtain appropriate datasets for our performance 

studies.   We contacted the NASA/JPL research staff and carefully studied their Sensor Webs 

project in detail.  We were able to obtain an appropriate dataset that we could use.  We also 

obtained another NASA/JPL dataset from Dr. Nikunj Oza at NASA Ames Research Center and 

plan to use it for our next experiments.  We are currently also investigating the Sensor Web 

project from Microsoft which allows many organizations to publish their sensor data and 

applications on the Web.  We hope to be able conduct further experiments with larger real-life 

datasets to study our algorithms’ scalability. 

 

 

3. PLAN FOR NEXT YEAR 

 

We are requesting a no-cost extension to 7/31/2010 for this project in order to complete it 

successfully.  During the summer months, our student research assistants are allowed to work 

full-time, and thus, they will be able to produce more research results than during the academic 

months and help with writing the final report.   During the requested extension period from 

10/1/2009 to 7/31/2009, we plan to work on the following tasks: 

 

 Extend our data estimation algorithm, MASTER, to mobile sensor networks. 

 Conduct theoretical analyses of our MASTER algorithms. 

 Incorporate the association rule mining algorithm for data streams that we have 

developed into our MASTER algorithms. 

 Collect real-data sets for mobile sensor network applications. 

 Work with NASA scientists to understand the data we obtained and use them for our 

testing.  In particular, we will continue communicating with Dr. Nikunj Oza at NASA 

Ames Research Center to incorporate the MODIS dataset that he has generously sent to 

us into our research. 

 Conduct theoretical analysis and experiments comparing our MASTER algorithms with 

existing data estimation techniques for multi-hop sensor networks, cluster sensor 

networks, and mobile sensor networks using NASA data, other real-life datasets and 

synthetic data. 

 Report the research findings in international conference proceedings and journals. 

 Submit the final report to NASA. 
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